Calcium-dependence of chromogranin A-catecholamine interaction

R. Westermann, F. Stögbauer, K. Unsicker and R. Lietzke

Department of Anatomy and Cell Biology, University of Marburg, Robert Koch Str. 6, D-3550 Marburg, FRG

Received 15 September 1988

Major components of the secretory organelle of bovine adrenal medullary cells, the chromaffin vesicles, are the acidic protein chromogranin A, catecholamines and Ca²⁺. The binding of Ca²⁺ to chromogranin A has been established. To study the interaction between chromogranin A and catecholamines and its dependence on Ca²⁺ we immobilized chromogranin A to a newly raised monoclonal antibody. It is shown that chromogranin A can bind (i) about 0.5 mol catecholamines per mol in a non-calcium-dependent manner and (ii) about 5 mol per mol in the presence of calcium. These results further support the notion that chromogranin A may act as a secretory granule-condensing protein.

Chromaffin granule; Chromogranin A; Catecholamine; Monoclonal antibody; Ca²⁺

1. INTRODUCTION

Chromogranins (CHR) are acidic, soluble proteins of the catecholamine (CA) storing vesicles in adrenal medullary cells [1,2] which are secreted together with CA. Despite the fact that their biochemical properties are well characterized [3-5], their biological function(s) is (are) unknown. It has been proposed that they may act as hormone-specific proteases, as hormone precursors, and, because of their Ca²⁺-binding [6,7] and aggregating properties, as secretory vesiclecondensing proteins [8,3]. The high abundance and co-storage of CHR, CA and Ca²⁺ in chromaffin granules prompted us to analyze the putative interaction between these three groups of molecules. We raised a monoclonal antibody against bovine CHR-A which was used for both CHR-A purification and as a solid support for CHR-A in the binding studies.

Correspondence address: R. Westermann, Department of Anatomy and Cell Biology, Robert Koch Str. 6, D-3550 Marburg, FRG

2. MATERIALS AND METHODS

2.1. Materials

Cell culture medium (Iscove's medium) was obtained from Seromed (Berlin). Myoclone fetal calf serum was from Gibco (Karlsruhe, FRG); cell culture plastic material from Falcon (Becton and Dickinson, Heidelberg, FRG); and Sepharose 4B from Pharmacia (Freiburg, FRG). All other chemicals were of analytical grade and obtained from Sigma, Hoechst or Merck (Munich, Frankfurt, Darmstadt, FRG).

2.2. Methods

Bovine chromaffin cell vesicles were isolated according to Winkler and Smith [10] with the exception that the last centrifugation step was performed with a 1.7 M instead of 1.6 M sucrose custion. After freezing and thawing, vesicles were lysed in 5 mM phosphate, pH 6.5, and centrifuged for 30 min at $100000 \times g$. The supernatant was extensively dialysed against lysis buffer and subsequently against deionized water and lyophilized or directly loaded onto the anti-CHR-A affinity column. Determination of protein [11] and CA [12] as well as the preparation of immunoadsorbents [13] were performed as described. For the production of manacianal antihodies, têmale Balb/C mice were injected with purified bovine on an area exect 4 slavered intervals. 4 days after an intravenously applied booster injection isolated spleen cells were fused to myeloma cells (ratio 2:1) using PEG 4000 [15]. Culture supernatants were screened by enzyme-linked immunosorbent assays (ELISA) [16], immunofluorescence and immunoblotting [17,18]. After stringent recloning and mass culture one hybridoma line (7A1/H3) was injected into pristane-primed mice for ascites production.

3. RESULTS AND DISCUSSION

3.1. Characterization of the monoclonal antibody against bovine chromogranin A

The antibody (MAB 7A1/H3) which belongs to the IgG1 subclass was identified to be specific to CHR-A and its degradation products based on the following lines of evidence: (i) in one- and twodimensional immunoblots the molecular mass and pI of the main band (75 kDa, 5.0, fig.1) are similar to CHR-A (75 kDa, 5.0) but different from CHR-B (100 kDa, 5.2) and secretogranin II (= CHR-C, 86 kDa, 5.0) [3,4]; (ii) in two-dimensional immunoblots the pattern is identical to that obtained with a polyclonal antiserum monospecific for CHR-A (fig.1b); but, (iii) clearly different from anti-CHR-B and anti-secretogranin II patterns (fig.1c,d); (iv) proteins obtained by affinity chromatography with MAB 7A1/H3 are reactive with the polyclonal anti-CHR-A antiserum (fig.2a) and show a main band of 75 kDa (fig.2b); (v) these proteins are also different from prominent enzymes of chromaffin cells (dopamine-β-hydroxylase and phenylethanolamine-N-methyltransferase) as revealed by enzyme- and immunoassays (Seidl, K., personal communication); and, (vi) immunohistochemical label on bovine chromaffin cells is restricted to vesicles (fig.3). Since no crossreactivity with human or rat CHR-A was detectable (fig.4), MAB 7A1/H3 appears to be specific

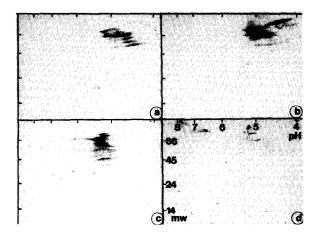
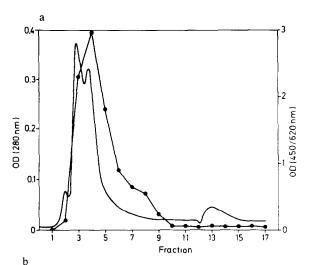



Fig.1. Comparison of 2D immunoblots of soluble bovine chromaffin granule proteins incubated with (a) MAB 7A1/H3, (b) anti CHR-A, (c) anti CHR-B, or (d) secretogranin II (= CHR-C) shows similar patterns for MAB 7A1/H3 and anti CHR-A.

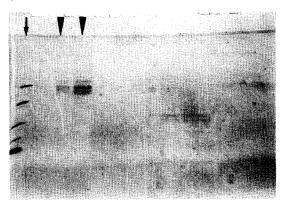


Fig.2. Characterization of proteins obtained by affinity chromatography of soluble chromaffin vesicle content on a MAB 7A1/H3 column. Dialyzed vesicle content was passed over the antibody column. The bound proteins were eluted and further separated by gel filtration on an FPLC-Superose column (a, —). An ELISA using the polyclonal anti-CHR-A antiserum shows strong immunoreactivity for FPLC fractions 3-5 (a, •••). Separation by SDS-electrophoresis of FPLC fractions 2-15 (b, left to right) reveals the presence of 4 proteins of 75, 63, 57, and 53 kDa in fractions 3 and 4 (arrowheads) indicating that most, if not all protein bound to the MAB 7A1/H3 column corresponds to CHR-A and its degradation products (arrow in b, molecular mass marker proteins of 66, 45, 34, 20.1, and 12.4 kDa).

to bovine CHR-A. For quantitative determination a competitive ELISA with a detection limit of about 1 ng was established (fig.5).

3.2. Catecholamine binding to immobilized chromogranin A

The protein CHR-A is one of the most prominent constituents of bovine chromaffin vesicles



Fig.3. Immunohistochemistry of MAB 7A1/H3 on cultured bovine chromaffin cells shows a granular intracellular distribution of the antigen.

[1,2,10]. It was proposed that CHR-A is a secretory granule-condensing protein because of its ability to bind Ca^{2+} [6–9]. Besides CHR-A and Ca^{2+} , CA are the most abundant molecules present in bovine chromaffin vesicles. We therefore first investigated the CA-binding capacity of immobilized CHR-A in the absence of Ca^{2+} . The MAB was coupled to BrCN-activated Sepharose 4B and loaded in succession with (i) saturating amounts of immunoaffinity-purified CHR-A and (ii) a pulse of 600 μ g adrenaline. Elution of CA-

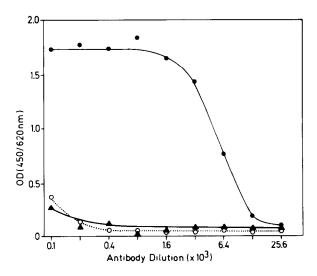


Fig. 4. Species specificity of MAB 7A1/H3 for bovine CHR-A is evident from an ELISA with soluble bovine chromaffin vesicle proteins (1 µg/well, •••) and extracts from adrenal glands (70 µg/well) of rat (0---0) and man (▲—••).

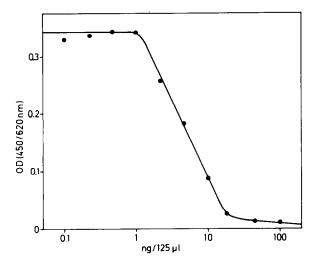


Fig. 5. Typical standard curve obtained by the competitive ELISA for CHR-A with MAB 7A1/H3. Antibody was diluted 1:50000 in phosphate buffered saline with the indicated amounts of affinity-purified CHR-A and incubated overnight at 4°C. Following centrifugation the supernatant was transferred to CHR-A-precoated (10 ng/well) microtiter plates, incubated for 20 min at room temperature and further processed as in normal ELISA. Data represent mean values of a triple estimation.

CHR-A complexes with 50 mM glycine-HCl, pH 2.0, showed a distinct peak containing CHR-A as well as CA (fig.6). Quantitation by the CHR-A competitive ELISA and CA-HPLC revealed a molar ratio of 1:0.5 for CHR-A to adrenaline. These results clearly demonstrate the ability of CHR-A to bind low, but significant amounts of CA.

3.3. Catecholamine binding in the presence of Ca^{2+}

To analyze the effects of Ca²⁺ on CA binding, the immunoaffinity column was equilibrated overnight with undialyzed vesicle content, i.e. in the presence of physiological relations of CHR-A, CA, and Ca²⁺. Elution with a Ca²⁺ gradient from 0.05 to 1.0 M resulted in a rapid release of only CA, while during removal of Ca²⁺ by EDTA and elution of CHR-A with glycine-HCl distinct peaks containing CHR-A and CA were observed (fig.7). The total amount of bound CA to CHR-A corresponded to a molar ratio of about 5:1. Results demonstrate that bovine CHR-A not only binds Ca²⁺ but also CA. Attached via a high-affinity

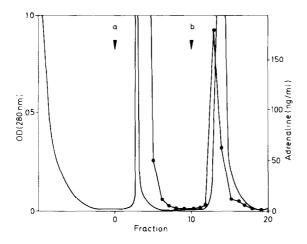


Fig. 6. Elution profiles of CHR-A and CA in the absence of Ca²⁺. Bovine CHR-A was bound to the MAB 7A1/H3 immunoaffinity column and unbound material washed off with 10 mM Tris-HCl, pH 7.0. Then a pulse of 600 μg adrenaline/ml (arrowhead a) was given and unbound adrenaline washed off with Tris buffer. The CHR-A-CA complexes were eluted with 50 mM glycine-HCl, pH 2.0 (arrowhead b), and CHR-A as well as adrenaline quantified by competitive ELISA or HPLC, respectively. A molar ratio of 0.5:1 for CA/CHR-A was observed. (——) Absorbance at 280 nm; (•—•) adrenaline concentration.

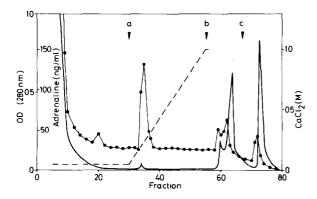


Fig. 7. Elution profiles of CHR-A and CA in the presence of Ca²⁺. The MAB 7A1/H3 immunoaffinity column was equilibrated overnight with total, undialyzed soluble chromaffin vesicle content. Unbound material was removed by washing with 10 mM phosphate buffer, pH 6.6, containing CA (25 ng adrenaline/ml) and Ca²⁺ (50 μM). Immediately after starting a linear Ca²⁺ gradient (arrowhead a) a CA peak was observed, while nearly no CHR-A was detectable. Coelution of CHR-A and CA occurred during removal of Ca²⁺ with 0.1 M EDTA (arrowhead b) and elution with 50 mM glycine-HCl, pH 2.0 (arrowhead c). Quantification of CHR-A as well as CA showed a total ratio of 5:1 for CA/CHR-A. (——) Absorbance at 280 nm; (•—•) adrenaline concentration.

monoclonal antibody to a solid phase, CHR-A can bind only minor quantities of CA in the absence of Ca^{2+} (0.5 mol CA per mol CHR-A, assuming a molecular mass of 75 kDa). In the presence of Ca^{2+} (up to 100 μ m, see fig.7) the binding ratio increased by a factor of 10 (5 mol CA per mol CHR-A). These findings support the hypothesis that CHR-A may act as a secretory granule condensing-protein to reduce osmotic pressure during storage of small molecules like CA [8,9].

Acknowledgements: The technical assistance of Mrs C. Giesen-Konrad and Mrs M. Johannsen is gratefully acknowledged. Monospecific antisera against CHR-A,B,C were a generous gift from H. Winkler, Innsbruck. This work was supported by grants from the Deutsche Forschungsgemeinschaft.

REFERENCES

- [1] Winkler, H. (1982) Scand. J. Immunol. 15, 75-96.
- [2] Winkler, H. and Carmichael, S.W. (1982) in: The Secretory Granule (Poisner, A.M. and Trifaró, J. eds) pp.3-79, Elsevier, Amsterdam, New York.
- [3] O'Connor, D.T. and Frigon, R.P. (1984) J. Biol. Chem. 259, 3237-3247.
- [4] Fischer-Colbrie, R. and Frischenschlager, I. (1985) J. Neurochem. 44, 1854–1861.
- [5] Settleman, J., Fonseca, R., Nolan, J. and Hogue-Angeletti, R. (1985) J. Biol. Chem. 260, 1645–1651.
- [6] Reiffen, F.U. and Gratzl, M. (1986) FEBS Lett. 195, 327-330.
- [7] Reiffen, F.U. and Gratzl, M. (1986) Biochemistry 25, 4402-4406.
- [8] Winkler, H., Apps, D.K. and Fischer-Colbrie, R. (1986) Neuroscience 18, 261–290.
- [9] Gorr, S.U., Kumarasamy, R., Dean, W.L. and Cohn, D.V. (1987) Bone Miner. 2, 251-255.
- [10] Winkler, H. and Smith, D. (1975) in: Handbook of Physiology 7/VI, pp.321-339, Am. Physiol. Soc., Washington, DC.
- [11] Bradford, M.M. (1976) Anal. Biochem. 72, 248-254.
- [12] Mueller, T.H. and Unsicker, K. (1981) J. Neurosci. Methods 4, 39-52.
- [13] March, S.C., Parikh, I. and Cuatrecasas, P. (1974) Anal. Biochem. 60, 149-152.
- [14] Unsicker, K. and Mueller, T.H. (1981) J. Neurosci. Methods 4, 227-241.
- [15] Lietzke, R. and Unsicker, K. (1985) J. Immunol. Methods 76, 223-228.
- [16] Engvall, E. and Perlman, P. (1972) J. Immunol. 109, 129-135.
- [17] Towbin, H.T., Staehelin, T. and Fordin, J. (1979) Proc. Natl. Acad. Sci. USA 76, 4350-4354.
- [18] Hawkes, R., Niday, E. and Gordon, J. (1982) Anal. Biochem. 119, 142-147.